G.A. Edgar Department of Mathematics The Ohio State University Columbus, Ohio 43210 U.S.A.

<u>Abstract</u>. It is proved that the unit ball (with its weak topology) is not realcompact in the Banach spaces ℓ_{∞}/c_0 and $J(\omega_1)$. It is stated, but not proved, that the unit ball is not measure-compact in the Banach space ℓ_{∞} .

1. Let X be a Banach space. Topological properties of the weak topology $\sigma(X, X^*)$ have been of interest recently (for example [4][9]). The unit ball $B_X = \{x \in X : ||x|| \le 1\}$ in the relative weak topology can also be considered. Since $(B_X, weak)$ is a closed subset of (X, weak), we see that if (X, weak) is real-compact (measure-compact), so is $(B_X, weak)$. The question I will be concerned with in this paper is whether the converse is true.

I do not have an answer to the question in general. In this paper, some concrete Banach spaces X are considered that are known not to be realcompact (or measure-compact), and it is proved that B_X is also not realcompact (or measure-compact). In some cases this is more difficult for B_X than for X. Reasons for the extra difficulty are hard to pin down. Corson's criterion for realcompactness in X [1, p. 10] is false when applied to B_X (see Theorem 5.3, below). The σ -algebra of Baire sets for X is generated by X^* [4, Theorem 2.3] but this is not necessarily true for B_X (see Section 3).

Topological words and phrases will always refer to the weak topology $\sigma(X, X^*)$ unless the contrary is specified. If T is a topological space, we write C(T) for the set of all continuous, real-valued functions on T.

General background on realcompactness can be found in [8]; on measure-compactness can be found in [9].

 In this preliminary section, we will recast some topological conditions in terms of nets. Doubtless this could be avoided in the sequel, but I find it helpful.

*Supported in part by National Science Foundation grant MCS 8003078.

2.1 Definition. A σ -directed set is a directed set such that every countable subset has an upper bound. A σ -net is a net whose domain is a σ -directed set.

The proofs of the following observations are omitted.

A topological space T is Lindelof if and only if every σ -net in T has a cluster point.

A σ -net that converges in \mathbb{R} is eventually constant. A σ -net in \mathbb{R} that does not converge has at least two finite cluster points.

If a $\sigma\text{-net}$ is in a countable union \bigcup^{m} A_n , then it is frequently in A_n (for some n).

Let I be a set whose cardinal is not 2-valued measurable [that is, the discrete space I is realcompact]. If (x_{ξ}) is a σ -net in a union $\bigcup_i \in I^{A_i}$ that is not eventually in any A_i , then there exist disjoint I_1 , $I_2 \subseteq I$ such that (x_{ξ}) is frequently in each of the sets $\bigcup_{i \in I_1} A_i$, $\bigcup_{i \in I_2} A_i$.

Let T be a topological space. Then T is realcompact if and only if each σ -net (x_{ξ}) such that $h(x_{\xi})$ converges for all continuous $h : T \rightarrow \mathbb{R}$ is convergent. (In general, the limits of such nets are the points of the Hewitt real compactification vX.)

3. I include here an example where Baire $(B_{\chi}, weak) \neq Baire (X, weak) \cap B_{\chi}$. Some of the later examples have the same property, but the verification is simpler in this case.

Let $X = \ell_1(r)$, where card $r > 2^{\aleph_0}$. Define

$$G = \{f : ||f|| \leq 1, f(j) > \frac{3}{4} \text{ for some } \gamma \in r\}$$
.

Then (1) G is a cozero set in B_{χ} ; and (2) there is no Baire set D in X with D $n B_{\chi} = G$.

To see that (1) is true, consider the function.

$$f \mapsto \frac{3}{4} \operatorname{max}_{\gamma \in \Gamma} f(\gamma)$$

on $(B_{\chi}, weak)$. It is continuous since the closure of any set $A_{\gamma} = \{f : f(\gamma) > \frac{3}{4}\}$ is disjoint from the closure of the union of all the rest.

For (2), suppose D is a Baire set in (X, weak) with D \cap B_X = G. Then [4, Theorem 2.3] D is determined by countably many linear functionals $\{g_1, g_2, \ldots\} \subseteq \mathfrak{L}_1(\Gamma)^*$. Let e_{γ} be the canonical unit vectors in $\mathfrak{L}_1(\Gamma)$. Since card $\Gamma > 2^{\bigotimes 0}$, there is an uncountable $\Gamma_0 \subseteq \Gamma$ with $g_i(e_{\gamma}) = g_i(e_{\gamma'})$ for all $\gamma, \gamma' \in \Gamma_0$ and all $i = 1, 2, \ldots$. Now $e_{\gamma} \in G \subseteq D$, so $\frac{1}{2}(e_{\gamma} + e_{\gamma'}) \in D$ when $\gamma, \gamma' \in \Gamma_0$, but not in G. So $D \cap B_X \neq G$.

4. The next example is the space $X = \ell_{\infty}/c_0$, which Corson showed is not realcompact [1, p. 12]. The proof that B_X is not realcompact is similar to Corson's proof, but greater care must be taken, since Corson's criterion for realcompactness of X may fail for B_X .

We consider $\mathfrak{L}_{\infty}/c_0 = C(\beta \mathbb{N} \setminus \mathbb{N})$. For countable ordinals α , there exist clopen sets T_{α} in $\beta \mathbb{N} \setminus \mathbb{N}$ such that if $\alpha < \beta$ then $T_{\alpha} \lneq T_{\beta}$ [1, p. 13]. Let $x_{\alpha} = x_{T_{\alpha}} \in C(\beta \mathbb{N} \setminus \mathbb{N}) = X$, and $F = x_{\cup T_{\alpha}} \notin X^{**}$. Corson showed $F \notin X$ but $x_{\alpha} + F$ in $\cup X$. In fact, $||x_{\alpha}|| = 1$, ||F|| = 1, so I must show that $h(x_{\alpha})$ converges for any $h \notin C(B_X)$. Suppose not. Then there exist a < b such that $h(x_{\alpha}) > b$ frequently and $h(x_{\alpha}) < a$ frequently.

Note that if $H \subseteq \beta \mathbb{N} \setminus \mathbb{N}$ is the support of a measure, then (by countable additivity) there exists $\beta < \omega_1$ such that $H \cap (U_{\alpha}T_{\alpha}) = H \cap T_{\beta}$. So for each α such that $h(x_{\alpha}) > b$ [respectively, $h(x_{\alpha}) < a$], choose a basic neighborhood of x_{α} so that h(x) > b [respectively, h(x) < a] on it. By considering finitely many supports of measures, it follows that there exists $\overline{\alpha} < \omega_1$ so that if $x|T_{\overline{\alpha}} = x_{\alpha}|_{T_{\overline{\alpha}}}$ then h(x) > b [resp., h(x) < a]. So, we can choose ordinals $\alpha_1 < \alpha_2 < \dots$ such that $h(x_{\alpha_k}) > b$ for k odd, $h(x_{\alpha_k}) < a$ for k even, $\alpha_{k+1} > \alpha_k$, $\alpha_{k+1} > \overline{\alpha_k}$. Choose $\beta > \sup_k \alpha_k$. Let $y_k = x_{\alpha_k} - x_{\alpha_{k+1}} + x_{\beta}$. Then $y_k|_{T_{\overline{\alpha}k}} = x_{\alpha_k}|_{T_{\overline{\alpha}k}}$, so $h(y_k)$ does not converge. But $||y_k|| = 1$ so $y_k \in B_{\chi}$ and $y_k + x_{\beta}$ (pointwise on $\beta \mathbb{N} \setminus \mathbb{N}$ and hence weakly in $C(\beta \mathbb{N} \setminus \mathbb{N})$ by the dominated convergence theorem). So h

5. The next example is the long James space $X = J(\omega_1)$. Notation will be the same as in [6], which I assume is familiar to the reader. Write $B = B_X$.

5.1 THEOREM. If $\,\mathcal{U}$ is a discrete family of nonempty open sets in 3B , then

234

 $\{U \in \mathcal{U} : U \cap B \neq \phi\}$ is countable.

<u>Proof.</u> Begin with the following observation: if $\alpha < \omega_1$, and \mathcal{U} is an uncountable family of nonempty open sets in B, then (since $J(\alpha)$ is separable) there exists $f \in B$ such that

$$\{ U \in \mathcal{U} : \text{there exists } g \in U , g | [0,\alpha] U \{ \omega_1 \} = f | [0,\alpha] U \{ \omega_1 \} \}$$

is uncountable.

Suppose $\mathcal{U}_0 = \{ U \in \mathcal{U} : U \cap B \neq \phi \}$ is uncountable. Let $\alpha_0 = 1$. Then there exists $f_1 \in B$ such that

$$\mathcal{U}_1 = \{ \mathbb{U} \in \mathcal{U}_0 : \text{there exists } g \in \mathbb{U} , g \Big|_{[0,\alpha_0] \cup \{\omega_1\}} = f_1 \Big|_{[0,\alpha_0] \cup \{\omega_1\}} \}$$

is uncountable. Choose $U_1 \in \mathcal{U}_1$. Then choose α_1 so that: $\alpha_1 > \alpha_0$, f_1 is constant on $[\alpha_1, \omega_1]$, and if $f = f_1$ on $[0, \alpha_1]$ then $f \in U_1$. Continue recursively. If α_k , f_k , \mathcal{U}_k , U_k have been chosen, there exists $f_{k+1} \in B$ such that $f_k = f_{k+1}$ on $[0, \alpha_{k-1}] \cup \{\omega_1\}$ and

$$\mathcal{U}_{k+1} = \{ U \in \mathcal{U}_k : \text{there exists } g \in U, g | [0, \alpha_k] U \{ \omega_1 \} = f_{k+1} | [0, \alpha_k] U \{ \omega_1 \} \}$$

is countable. Choose $U_{k+1} \in \mathcal{U}_{k+1}$ different from U_1 ,..., U_k . Then choose α_{k+1} so that: $\alpha_{k+1} > \alpha_k$, f_{k+1} is constant on $[\alpha_{k+1}, \omega_1]$, if $f = f_{k+1}$ on $[0, \alpha_{k+1}]$, then $f \in U_{k+1}$. This completes the recursive construction.

Now let $\beta = \sup \alpha_k$. Define $g : [0, \omega_1] + \mathbb{R}$ by $g(\alpha) = \lim_k f_k(\alpha)$. So in fact, $g(\alpha) = f_k(\alpha)$ if $\alpha \leq \alpha_{k-1}$, and $g(\alpha) = f_1(\omega_1)$ for $\alpha \geq \beta$. Now $||g|| \leq \sup ||f_k|| \leq 1$, so $\lim_{\alpha < \beta} g(\alpha)$ exists, possibly not equal to $g(\beta)$. Let $g_1(\alpha) = g(\alpha)$ for $\alpha \neq \beta$, $g_1(\beta) = \lim_{\alpha < \beta} g(\alpha)$. Then $g_1 \in \mathbb{B}$. Note that $g_1 = f_k$ on $[0, \alpha_{k-1}]$, $g_1(\omega_1) = f_k(\omega_1)$.

Now consider $h_k = g_1 + f_k - f_{k+1}$. Then $h_k \in 3B$. Also $g_1 = f_{k+1}$ on $[0, \alpha_k]$, so $h_k = f_k$ on $[0, \alpha_k]$. Thus $h_k \in U_k$. Also, $\lim_k h_k(\alpha) = g_1(\alpha)$ for all α . This shows that every neighborhood if g_1 in 3B meets infinitely many U_k 's , so \mathcal{U} is not discrete on 3B.

<u>5.2 Corollary.</u> There is an uncountable discrete family of open sets in B. Therefore, there is no (weakly) continuous retraction of 3B onto B, and in particular, there is no retraction of X onto B.

Proof. If $0 < \alpha < \omega_1$, let

 V_{α} = {f ε B : f($_{\alpha})$ < $\frac{1}{10}$, f($_{\alpha}$ + 1) > $\frac{9}{10}$ } .

Then $\mathcal{U} = \{V_{\alpha} : 0 < \alpha < \omega_1\}$ is an uncountable discrete family of open sets in B. The problem of finding retractions onto the unit ball has been studied by Wheeler [10].

If $X = J(\omega_1)$ is the long James space, it is proved in [6] that X is not realcompact. This is done as follows. Identifying X^{**} with $\tilde{J}(\omega_1)$, we may define $F \in X^{**}$ by :

(1)
$$F(\alpha) = 0$$
 for $\alpha < \omega_1$, $F(\omega_1) = 1$.

It is easily seen from Corson's criterion that $F \in UX$, but F is not continuous at ω_1 , so $F \notin X$. Thus X is not realcompact. Note that ||F|| = 1, so $F \notin B_{X^{**}}$. But F cannot be used to show that B is not realcompact, as the following result shows. The wording is somewhat awkward because it is not clear that UB can be identified with a subset of X^{**} ; certainly the inclusion $B \rightarrow X$ extends to a canonical map $UB \rightarrow UX \subseteq X^{**}$.

5.3 THEOREM. Let $X = J(\omega_1)$. There is no element of uB whose image in uX is F defined in (1).

<u>Proof.</u> Let (f_{ξ}) be a σ -net in B, suppose $f_{\xi}(\alpha) \neq 0$ for $\alpha < \omega_1$ and $f_{\xi}(\omega_1) \neq 1$. I will show that there is $h \in C(B)$ such that $h(f_{\xi})$ does not converge. This suffices to prove the result, as noted in Section 2.

By taking a cofinal subset of the directed set, we may assume $f_{\xi}(\omega_1) = 1$ for all ξ . Also, $f_{\xi}(0) = 0$ for all ξ and $||f_{\xi}|| \leq 1$, so $0 \leq f_{\xi}(\alpha) \leq 1$ for all ξ and all $\alpha \in [0 \ , \omega_1]$. Let

$$P_{\alpha,\varepsilon} = \{ f \in B : f = 0 \text{ on } [0, \alpha], f(\alpha + 1) > \varepsilon \}$$

Then

$$f_{\xi} \in \bigcup_{n=1}^{\infty} \bigcup_{\alpha < \omega_1}^{P_{\alpha,1/n}}$$

for all ξ , so (again taking a cofinal subset) we may assume

$$f_{\xi} \in \bigcup_{\alpha < \omega_1} P_{\alpha, \varepsilon}$$

for some fixed $\varepsilon > 0$. That is, for every ξ there exists $\alpha_{\xi} < \omega_{1}$, such that $f_{\xi} = 0$ on $[0, \alpha_{\xi}]$ and $f(\alpha_{\xi} + 1) > \varepsilon$. Given this ε , choose $\delta > 0$ so small that $3\delta < \varepsilon$ and $(\varepsilon - 2\delta)^{2} + (1 - 2\delta)^{2} > 1$.

For each $\alpha < \omega_1$, define

$$U_{\alpha} = \{ f \in B : f(\alpha) < \delta , f(\alpha + 1) > \varepsilon - \delta , f(\omega_1) > 1 - \delta \} ,$$
$$\overline{U}_{\alpha} = \{ f \in B : f(\alpha) \le \delta , f(\alpha + 1) \ge \varepsilon - \delta , f(\omega_1) \ge 1 - \delta \} ,$$

so that $f_{\xi} \in U_{\alpha_{\xi}}$. The sets U_{α} are cozero sets in B. I claim that the \overline{U}_{α} are disjoint, since δ is so small: indeed, suppose $f \in \overline{U}_{\alpha}$ are $\beta \geq \alpha + 2$. Then $||f||^2 \geq |f(\beta) - f(\alpha + 1)|^2 + |f(\alpha_1) - f(\beta)|^2$, so that if $f(\beta) \leq \delta$, then $||f||^2 \geq (\varepsilon - 2\delta)^2 + (1 - 2\delta)^2 > 1$. Thus $f(\beta) > \delta$, so $f \notin \overline{U}_{\beta}$. Also, $f \notin \overline{U}_{\alpha+1}$ since $3\delta < \varepsilon$.

Next, I claim that any subcollection $\{\overline{U}_{\alpha}\}_{\alpha} A$ of the \overline{U}_{α} has closed union. Let g be in the closure of $U_{\alpha \in A} \overline{U}_{\alpha}$. Let $\alpha_0 < \omega_1$ be such that g is constant on $[\alpha_0, \omega_1]$. Then g is not close to any member of $U_{\alpha > \alpha_0}, \alpha \in A \overline{U}_{\alpha}$, so g is in the closure of $U_{\alpha \leq \alpha_0}, \alpha \in A \overline{U}_{\alpha}$. Let β_0 be the smallest ordinal such that g is in the closure of $\overline{U}_{\alpha \leq \beta_0}, \alpha \in \overline{A}, \overline{U}_{\alpha}$. If β_0 is a successor ordinal, then $g \in \overline{U}_{\beta_0}$. If

 β_0 is a limit ordinal, and $g \notin \overline{U}_{\beta_0}$, then continuity of g yields $\beta_1 < \beta_0$ such that $|g(\alpha) - g(\alpha + 1)| < \delta/2$ for $\beta_1 \leq \alpha < \beta$. Then g is not close to any member of $U_{\beta_1 \leq \alpha < \beta, \alpha \in A} \overline{U}_{\alpha}$, so g is in the closure of $U_{\alpha \leq \beta_1, \alpha \in A} \overline{U}_{\alpha}$, a contradiction.

Finally, note that (f_{ξ}) is a σ -net in the disjoint union $U_{\alpha \le \omega_1} U_{\alpha}$ and \aleph_1 is not a 2-valued measurable cardinal, so there exist disjoint A_1 , $A_2 \subseteq [0, \omega_1)$ such that $f_{\xi} \in U_{\alpha \in A_1} U_{\alpha}$ frequently and $f_{\xi} \in U_{\alpha \in A_2} U_{\alpha}$ frequently. By the closedness of the unions above, there is a continuous function $h \in C(B)$ such that h = 0 on \overline{U}_{α} for $\alpha \in A_2$, but

$$h(f) = (\delta - f(\alpha))(f(\alpha + 1) - \varepsilon + \delta)(f(\omega_1) - 1 + \delta)$$

on \overline{U}_{α} for $\alpha \in A_1$. Thus $h(f_{\xi}) = 0$ frequently and $h(f_{\xi}) > \delta^3$ frequently. So $h(f_{\xi})$ does not converge.

It should be remarked that the above result shows that Corson's criterion for elements of νX fails to characterize νB .

Even though F cannot be used to prove it, the ball B of $X = J(\omega_1)$ is not realcompact. We can use a small multiple of F for this.

5.4 THEOREM. There is an element of νB whose image in νX is (.1)F.

<u>Proof.</u> For countable ordinal α , let $f\alpha = (.1)_{X(\alpha,\omega_1]}$. I will show that $h(f_{\alpha})$ converges for all $h \in C(B)$. This will mean that $(.1)F = \lim_{\alpha} f_{\alpha}$ is in (the image of) νB but not in B, so B is not realcompact.

Let $h \in C(B)$. Suppose (for purposes of contradiction) that $h(f_{\alpha})$ does not converge. Then (by uncountable confinality) there exist a < b such that $h(f_{\alpha}) > b$ frequently and $h(f_{\alpha}) < a$ frequently. Let $A_1 = \{\alpha : h(f_{\alpha}) > b\}$,

 $A_2 = \{\alpha : h(f_{\alpha}) < a\}$. Both are uncountable. For each $\alpha \in A_1$, choose an open neighborhood U_{α} of f_{α} determined by finitely many functionals: these functionals involve only countably many coordinates, say

 $K_{\alpha} = [0, \overline{\alpha}] \cup \{\omega_1\}$, where $\overline{\alpha} < \omega_1$. Thus if $f|_{K_{\alpha}} = f_{\alpha}|_{K_{\alpha}}$, then h(f) > b.

Similarly, for $\alpha \in A_2$ we get $K\alpha = [0, \overline{\alpha}] \cup \{\omega_1\}$, where $\overline{\alpha} < \omega_1$, and if

 $\begin{aligned} f \Big|_{K_{\alpha}} &= f_{\alpha} \Big|_{K_{\alpha}} & \text{then } h(f) < a . \\ & \text{Now define inductively } \alpha_1 < \alpha_2 < \dots \text{ so that } \alpha_{k+1} > \alpha_k , \alpha_k \in A_1 \text{ , for odd } k \text{ ,} \\ \sigma_k \in A_2 & \text{for even } k \text{ . Pick } \beta > \sup_k \alpha_k \text{ , } \beta < \omega_1 \text{ . Then let} \end{aligned}$

$$g_{k} = (.1)_{\chi(\alpha_{k},\alpha_{k}]} + (.1)_{\chi(\beta,\omega_{1}]}$$

then $g_k \Big|_{K\alpha_k} = f_{\alpha_k} \Big|_{K\alpha_k}$ so $h(g_k) > b$ for k odd , $h(g_k) < a$ for k even . But g_k converges weakly to $(.1)_{X(\beta,\omega_1]}$, and this contradicts the continuity of h . \Box

6. The next example is $X = t_{\infty}$. This space is realcompact, but not measurecompact. One way to see that X is not measure-compact is based on an observation of Hagler (see [2, p. 43]). He exhibits a function ϕ : [0, 1] + t_{∞} which is scalarly measurable (and thus Baire measurable [4, Theorem 2.3]), but not scalarly equivalent to a Bochner measurable function, so that the image of Lebesgue measure under ϕ is not a τ -smooth measure (see [4, Section 5]).

Now Hagler's function has range in B_{χ} , so in order to show that B_{χ} is not measure-compact, it is enough to show that ϕ is Baire measurable into B_{χ} . That is, if $h \in C(B_{\chi})$, then $h \circ \phi$ is Lebesgue measurable. This can be done. But my proof is so long, and the result apparently so useless, that I will not include it here. Let me include only the following hints.

Suppose $h \circ \phi$ is not Lebesgue measurable. Then (restricting to a subset of positive measure) there exist a < b so that on every set of positive measure, $h \circ \phi$ has values > b and values < a. Something like the constructions in Theorems 4 and 5.4 can then be carried out (on branches of a binary tree) to find points $t_k \in [0, 1]$ and $t^* \in [0, 1]$ so that $y_k = \phi(t^*) + \phi(t_k) - \phi(t_{k+1})$ converges weakly to $\phi(t^*)$, but $h(y_k) > b$ for odd k, $h(y_k) < a$ for even k. This contradicts the continuity of h.

References

 H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math Soc. 101 (1961) 1-15.

- 2. J. Diestel and J.J. Uhl, Vector Measures, American Mathematical Society, 1977.
- 3. N. Dunford and J.T. Schwartz, Linear Operators I, Interscience Publishers, 1957.
- G.A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26(1977) 663-677.
- G.A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28(1979) 559-579.
- G.A. Edgar, A long James space, In: Measure Theory, Oberwolfach 1979, D. Kölzow (editor), Lecture Notes in Mathematics 794, Springer-Verlag, 1980, pp. 31-36.
- 7. G.A. Edgar and R.F. Wheeler, Topological properties of Banach spaces. Preprint.
- 8. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
- W. Moran, Measures and mappings on topological spaces, Proc. London Math. Soc. 19(1969) 493-508.
- R. Wheeler, The retraction property, CCC property, and Dunford-Pettis-Phillips property for Banach spaces, Measure Theory, Oberwolfach 1981, D. Kölzow (editor), Lecture Notes in Mathematics, 945, Springer-Verlag, 1982, pp. 252-262.