REALCOMPACTNESS AND MEASURE-COMPACTNESS OF THE UNIT BALL IN A BANACH SPACE*

G.A. Edgar
Department of Mathematics
The Ohio State University
Columbus, Ohio 43210 U.S.A.

Abstract. It is proved that the unit ball (with its weak topology) is not realcompact in the Banach spaces ℓ_{∞} / c_{0} and $J\left(\omega_{1}\right)$. It is stated, but not proved, that the unit ball is not measure-compact in the Banach space ℓ_{∞}.

1. Let X be a Banach space. Topological properties of the weak topology $\sigma\left(X, X^{\star}\right.$) have been of interest recently (for example [4][9]). The unit ball $\mathrm{BX}_{\mathrm{X}}=$ $\{x \in X:\|x\| \leq 1\}$ in the relative weak topology can also be considered. Since (B_{X}, weak) is a closed subset of (X, weak), we see that if (X, weak) is realcompact (measure-compact), so is (B_{X}, weak) . The question I will be concerned with in this paper is whether the converse is true.

I do not have an answer to the question in general. In this paper, some concrete Banach spaces X are considered that are known not to be realcompact (or measure-compact), and it is proved that B_{X} is also not realcompact (or measurecompact). In some cases this is more difficult for B_{X} than for X. Reasons for the extra difficulty are hard to pin down. Corson's criterion for realcompactness in $X[1, p .10]$ is false when applied to B_{X} (see Theorem 5.3 , below). The σ algebra of Baire sets for X is generated by X^{\star} [4, Theorem 2.3] but this is not necessarily true for B_{X} (see Section 3).

Topological words and phrases will always refer to the weak topology o(x, x^{\star}) unless the contrary is specified. If T is a topological space, we write $C(T)$ for the set of all continuous, real-valued functions on T.

General background on realcompactness can be found in [8]; on measure-compactness can be found in [9].
2. In this preliminary section, we will recast some topological conditions in terms of nets. Doubtless this could be avoided in the sequel, but I find it helpful.

[^0]2.1 Definition. A o-directed set is a directed set such that every countable subset has an upper bound. A g-net is a net whose domain is a o-directed set.

The proofs of the following observations are mitted.
A topological space T is Lindelof if and only if every o-net in T has a cluster point.

A onet that converges in \mathbb{R} is eventually constant. A σ-net in \mathbb{R} that does not converge has at least two finite cluster points.

If a o-net is in a countable union $\bigcup^{\infty} A_{n}$, then it is frequently in A_{n} (for some n).

Let I be a set whose cardinal is not 2 -valued measurable [that is, the discrete space I is realcompact]. If $\left(x_{\xi}\right)$ is a onet in a union $U_{i} \in A_{i}$ that is not eventually in any A_{i}, then there exist disjoint $I_{1}, I_{2} 5 I$ such that $\left(x_{\xi}\right)$ is frequently in each of the sets $U_{i \in I_{1}} A_{i}, U_{i \in I_{2}} A_{i}$.

Let T be a topological space. Then T is realcompact if and only if each σ-net $\left(x_{\xi}\right)$ such that $h\left(x_{\xi}\right)$ converges for all continuous $h: T \rightarrow \mathbb{R}$ is convergent. (In general, the limits of such nets are the points of the Hewitt real compactification $u \times$.)
3. I include here an example where Baire $\left(B_{X}\right.$, weak) \neq Baire (X, weak) $\cap B_{X}$. Some of the later examples have the same property, but the verification is simpler in this case.

Let $X=\ell_{1}(r)$, where card $r>2^{N} 0$. Define

$$
G=\left\{f:\|f\| \leq 1, f(j)>\frac{3}{4} \text { for some } r \in \Gamma\right\}
$$

Then (1) G is a cozero set in B_{X}; and (2) there is no Baire set D in X with $D \cap B_{X}=G$.

To see that (1) is true, consider the function.

$$
f \mapsto \frac{3}{4} v \max _{\gamma \in \Gamma} f(\gamma)
$$

on $\left(B_{X}\right.$, weak $)$. It is continuous since the closure of any set $A_{Y}=\left\{f: f(Y)>\frac{3}{4}\right\}$ is disjoint from the closure of the union of all the rest.

For (2), suppose D is a Baire set in (X, weak) with $D \cap B_{X}=G$. Then [4, Theorem 2.3] D is determined by countably many linear functionals $\left\{g_{1}, g_{2}, \ldots\right\} \subseteq$ $\ell_{1}(\Gamma)^{*}$. Let e_{γ} be the canonical unit vectors in $\ell_{1}(r)$. Since card $r>2^{\mathcal{N}_{0}}$, there is an uncountable $\Gamma_{0} \leq \Gamma$ with $g_{j}\left(e_{\gamma}\right)=g_{i}\left(e_{\gamma}\right)$ for all $\gamma, \gamma^{\prime} \in \Gamma_{0}$ and all $i=1,2, \ldots$. Now $e_{\gamma} \in G \subseteq D$, so $\frac{1}{2}\left(e_{Y}+e_{\gamma^{\prime}}\right) \in D$ when $\gamma, Y^{\prime} \in \Gamma_{0}$, but not in G. So $D \cap B_{X} \neq G$.
4. The next example is the space $X=\ell_{\infty} / c_{0}$, which Corson showed is not realcompact [1, p. 12]. The proof that B_{X} is not realcompact is similar to Corson's proof, but greater care must be taken, since Corson's criterion for realcompactness of X may fail for B_{X}.

We consider $\ell_{\infty} / C_{0}=C(\beta \mathbb{N} \mathbb{N})$. For countable ordinals α, there exist clopen sets T_{α} in $\beta \mathbb{N} \backslash \mathbb{N}$ such that if $\alpha<\beta$ then $T_{\alpha} \underset{\beta}{ } \mathrm{T}_{\beta}[1, \mathrm{p} .13]$. Let $x_{\alpha}=x_{T_{\alpha}} \in C\left(B_{\mathbb{N} \backslash \mathbb{N}}\right)=X$, and $F=x \cup \sigma_{\alpha} \in x^{* *}$. Corson showed $F \notin X$ but $x_{\alpha} \rightarrow F$ in $u X$. In fact, $\left\|x_{\alpha}\right\|=1,\|F\|=1$, so I must show that $h\left(x_{\alpha}\right)$ converges for any $h \in C\left(B_{X}\right)$. Suppose not. Then there exist $a<b$ such that $h\left(x_{\alpha}\right)>b$ frequently and $h\left(x_{\alpha}\right)<a \quad$ frequently.

Note that if $H S B \mathbb{N} \backslash \mathbb{N}$ is the support of a measure, then (by countable additivity) there exists $\beta<\omega_{1}$ such that $H \cap\left(U_{\alpha} T_{\alpha}\right)=H \cap T_{\beta}$. So for each α such that $h\left(x_{\alpha}\right)>b\left[r e s p e c t i v e l y, h\left(x_{\alpha}\right)<a\right]$, choose a basic neighborhood of x_{α} so that $h(x)>b$ [respectively, $h(x)<a]$ on it. By considering finitely many supports of measures, it follows that there exists $\bar{\alpha}<\omega_{1}$ so that if $x\left|T_{\bar{\alpha}}=x_{\alpha}\right|_{T_{\bar{\alpha}}}$ then $h(x)>b$ [resp., $h(x)<a]$. So, we can choose ordinals $\alpha_{1}<\alpha_{2}<\ldots$ such that $h\left(x_{\alpha_{k}}\right)>b$ for k odd, $h\left(x_{\alpha_{k}}\right)<a$ for k even, $a_{k+1}>\alpha_{k}, \alpha_{k+1}>\bar{a}_{k}$. Choose $\beta>\sup _{k} \alpha_{k}$. Let $y_{k}=x_{\alpha_{k}}-x_{\alpha_{k+1}}+x_{\beta}$. Then $\left.y_{k}\right|_{T_{\bar{a}_{k}}}=\left.x_{\alpha_{k}}\right|_{T_{\alpha_{k}}}$, so $h\left(y_{k}\right)$ does not converge. But $\left\|y_{k}\right\|=1$ so $y_{k} \in B_{X}$ and $y_{k} \rightarrow x_{B}$ (pointwise on $\beta \mathbb{M} \backslash \mathbb{N}$ and hence weakly in $C(\beta \mathbb{M} \backslash \mathbb{N})$ by the dominated convergence theorem). So h is not continuous on $C\left(B_{X}\right)$.
5. The next example is the long James space $x=J\left(\omega_{1}\right)$. Notation will be the same as in [6], which I assume is familiar to the reader. Write $B=B x$.
5.1 THEOREM. If U is a discrete family of nonempty open sets in $3 B$, then
$\{U \in U: U \cap B \neq \phi\}$ is countable.

Proof. Begin with the following observation: if $\alpha<\omega_{1}$, and U is an uncountable family of nonempty open sets in B, then (since $J(\alpha)$ is separable) there exists $f \in B$ such that

$$
\left\{U \in U: \text { there exists } g \in U,\left.g\right|_{[0, \alpha] U\left\{\omega_{1}\right\}}=\left.f\right|_{[0, \alpha] \cup\left\{\omega_{1}\right\}}\right\}
$$

is uncountable.
Suppose $U_{0}=\{U \in U: U \cap B \neq \phi\}$ is uncountable. Let $\alpha_{0}=1$. Then there exists $f_{1} \in B$ such that

$$
u_{1}=\left\{U \in u_{0}: \text { there exists } g \in U,\left.g\right|_{\left[0, \alpha_{0}\right] \cup\left\{\omega_{1}\right\}}=\left.f_{l}\right|_{\left[0, \alpha_{0}\right] \cup\left\{\omega_{1}\right\}}\right\}
$$

is uncountable. Choose $U_{1} \in \mathcal{U}_{1}$. Then choose α_{1} so that: $\alpha_{1}>\alpha_{0}, f_{1}$ is constant on $\left[\alpha_{1}, \omega_{1}\right]$, and if $f=f_{1}$ on $\left[0, \alpha_{1}\right]$ then $f \in U_{1}$. Continue recursively. If $\alpha_{k}, f_{k}, U_{k}, U_{k}$ have been chosen, there exists $f_{k+1} \in B$ such that $f_{k}=f_{k+1}$ on $\left[0, \alpha_{k-1}\right] \cup\left\{\omega_{1}\right\}$ and

$$
u_{k+1}=\left\{U \in U_{k}: \text { there exists } g \in U,\left.g\right|_{\left[0, \alpha_{k}\right] \cup\left\{\omega_{1}\right\}}=\left.f_{k+1}\right|_{\left[0, \alpha_{k}\right] \cup\left\{\omega_{1}\right\}}\right\}
$$

is countable. Choose $U_{k+1} \in \mathcal{U}_{k+1}$ different from U_{1}, \ldots, U_{k}. Then choose α_{k+1} so that: $\alpha_{k+1}>\alpha_{k}, f_{k+1}$ is constant on $\left[\alpha_{k+1}, \omega_{1}\right]$, if $f=f_{k+1}$ on $\left[0, \alpha_{k+1}\right]$, then $f \in U_{k+1}$. This completes the recursive construction.

Now let $\beta=\sup \alpha_{k}$. Define $g:\left[0, \omega_{1}\right] \rightarrow R$ by $g(\alpha)=1 i m_{k} f_{k}(\alpha)$. So in fact, $g(\alpha)=f_{k}(\alpha)$ if $\alpha \leq \alpha_{k-1}$, and $g(\alpha)=f_{1}\left(\omega_{1}\right)$ for $\alpha \geq \beta$. Now $\|g\| \leq$ $\sup \left\|f_{k}\right\| \leq 1$, so $1 i m_{\alpha<\beta} g(\alpha)$ exists, possibly not equal to $g(\beta)$. Let $g_{1}(\alpha)=g(\alpha)$ for $\alpha \neq \beta, g_{1}(\beta)=\lim \alpha_{\alpha<\beta} g(\alpha)$. Then $g_{1} \in B$. Note that $g_{1}=f_{k}$ on $\left[0, \alpha_{k-1}\right], g_{1}\left(\omega_{1}\right)=f_{k}\left(\omega_{1}\right)$.

Now consider $h_{k}=g_{1}+f_{k}-f_{k+1}$. Then $h_{k} \in 3 B$. ATso $g_{1}=f_{k+1}$ on $\left[0, \alpha_{k}\right]$, so $h_{k}=f_{k}$ on $\left[0, \alpha_{k}\right]$. Thus $h_{k} \in U_{k}$. Also, $1 i m_{k} h_{k}(\alpha)=g_{1}(\alpha)$ for all α. This shows that every neighborhood if g_{1} in $3 B$ meets infinitely many U_{k} 's , so U is not discrete on $3 B$.
5.2 Corollary. There is an uncountable discrete family of open sets in B. Therefore, there is no (weakly) continuous retraction of $3 B$ onto B, and in particular, there is no retraction of X onto B.

Proof. If $0<\alpha<\omega_{1}$, let

$$
V_{\alpha}=\left\{f \in B: f(\alpha)<\frac{1}{10}, f(\alpha+1\}>\frac{9}{10}\right\} .
$$

Then $\mathcal{U}=\left\{V_{\alpha}: 0<\alpha<\omega_{1}\right\}$ is an uncountable discrete family of open sets in 8.
The problem of finding retractions onto the unit ball has been studied by Wheeler [10].

If $X=J\left(\omega_{1}\right)$ is the long James space, it is proved in [6] that X is not realcompact. This is done as follows. Identifying $x^{* *}$ with $\tilde{J}\left(\omega_{1}\right)$, we may define $F \in X^{\star *}$ by :

$$
\begin{equation*}
F(\alpha)=0 \text { for } \alpha<\omega_{1}, F\left(\omega_{1}\right)=1 . \tag{1}
\end{equation*}
$$

It is easily seen from Corson's criterion that $F \in v X$, but F is not continuous at ω_{1}, so $F \notin X$. Thus X is not realcompact. Note that $\|F\|=1$, so $F \in B_{\boldsymbol{X}^{* *}}$. But F cannot be used to show that B is not realcompact, as the following result shows. The wording is somewhat awkward because it is not clear that $u B$ can be identified with a subset of $X^{* *}$; certainly the inclusion $B \rightarrow X$ extends to a canonical map $u B \rightarrow u X \subseteq X^{* *}$.
5.3 THEOREM. Let $X=J\left(\omega_{1}\right)$. There is no element of $u B$ whose image in $u X$ is F defined in (1).

Proof. Let $\left(f_{\xi}\right)$ be a σ-net in B, suppose $f_{\xi}(\alpha) \rightarrow 0$ for $\alpha<\omega_{1}$ and $f_{\xi}\left(\omega_{1}\right) \rightarrow 1$. I will show that there is $h \in C(B)$ such that $h\left(f_{\xi}\right)$ does not converge. This suffices to prove the result, as noted in Section 2.

By taking a cofinal subset of the directed set, we may assume $f_{\xi}\left(\omega_{1}\right)=1$ for all ξ. Also, $f_{\xi}(0)=0$ for all ξ and $\left\|f_{\xi}\right\| \leq 1$, so $0 \leq f_{\xi}(\alpha) \leq 1$ for
all ξ and all $\alpha \in\left[0, \omega_{1}\right]$. Let

$$
P_{\alpha, \varepsilon}=\{f \in B: f=0 \text { on }[0, \alpha], f(\alpha+1)>\varepsilon\}
$$

Then

$$
f_{\xi} \in \bigcup_{n=1}^{\infty} \bigcup_{\alpha<\omega_{1}} P_{\alpha, 1 / n}
$$

for all ξ, so (again taking a cofinal subset) we may assume

$$
f_{\xi} \in \bigcup_{\alpha<\omega_{1}} P_{\alpha, \varepsilon}
$$

for some fixed $\varepsilon>0$. That is, for every ξ there exists $\alpha_{\xi}<\omega_{1}$, such that $f_{\xi}=0$ on $\left[0, \alpha_{\xi}\right]$ and $f\left(\alpha_{\xi}+1\right)>\varepsilon$. Given this ε, choose $\delta>0$ so small that $3 \delta<\varepsilon$ and $(\varepsilon-2 \delta)^{2}+(1-2 \delta)^{2}>1$.

For each $\alpha<\omega_{1}$, define

$$
\begin{aligned}
& U_{\alpha}=\left\{f \in B: f(\alpha)<\delta, f(\alpha+1)>\varepsilon-\delta, f\left(\omega_{1}\right)>1-\delta\right\}, \\
& \bar{U}_{\alpha}=\left\{f \in B: f(\alpha) \leq \delta, f(\alpha+1) \geq \varepsilon-\delta, f\left(\omega_{1}\right) \geq 1-\delta\right\},
\end{aligned}
$$

so that $f_{\xi} \in U_{\alpha_{\xi}}$. The sets U_{α} are cozero sets in B. I claim that the \bar{U}_{α} are disjoint, since δ is so small: indeed, suppose $f \in \bar{U}_{\alpha}$ are $\beta \geq \alpha+2$. Then $\|f\|^{2} \geq|f(\beta)-f(\alpha+1)|^{2}+\left|f\left(u_{1}\right)-f(B)\right|^{2}$, so that if $f(\beta) \leq \delta$, then $\| f| |^{2} \geq$ $(\varepsilon-2 \delta)^{2}+(1-2 \delta)^{2}>1$. Thus $f(\beta)>\delta$, so $f \& \bar{U}_{\beta}$. Also, $f \notin \bar{U}_{\alpha+1}$ since $3 \delta<\varepsilon$.

Next, I claim that any subcollection $\left\{\bar{U}_{\alpha}\right\}_{\alpha} A$ of the \bar{U}_{α} has closed union. Let g be in the closure of $U_{\alpha \in A} \bar{U}_{\alpha}$. Let $\alpha_{0}<\omega_{1}$ be such that g is constant on $\left[\alpha_{0}, w_{1}\right]$. Then g is not close to any member of $U_{\alpha>\alpha_{0}}, \alpha \in A \bar{U}_{\alpha}$, so g is in the closure of $U_{\alpha \leq \alpha},{ }_{0} \in A \bar{U}_{\alpha}$. Let β_{0} be the smallest ordinal such that g is in
the closure of $\bar{U}_{\alpha \leq \beta_{0}, \alpha \in A} \bar{U}_{\alpha}$. If β_{0} is a successor ordinal, then $g \in \bar{U}_{\beta_{0}}$. If β_{0} is a limit ordinal, and $g \notin \bar{U}_{B_{0}}$, then continuity of g yields $\beta_{1}<\beta_{0}$ such that $|g(\alpha)-g(\alpha+1)|<\delta / 2$ for $\beta_{1} \leq \alpha<\beta$. Then g is not close to any member of $U_{\beta_{1} \leq \alpha<\beta, \alpha \in A} \bar{U}_{\alpha}$, so g is in the closure of $U_{\alpha \leq \beta}, \alpha \in A \bar{U}_{\alpha}$, a contradiction. Finally, note that $\left(f_{\xi}\right)$ is a σ-net in the disjoint union $U_{\alpha<\omega_{1}} U_{\alpha}$ and $火_{1}$ is not a 2-valued measurable cardinal, so there exist disjoint $A_{1}, A_{2} \subseteq\left[0, \omega_{1}\right)$ such that $f_{\xi} \in U_{\alpha \in A_{1}} U_{\alpha}$ frequently and $f_{\xi} \in U_{\alpha \in A_{2}} U_{\alpha}$ frequently. By the closedness of the unions above, there is a continuous function $h \in C(B)$ such that $h=0$ on \bar{U}_{α} for $\alpha \in A_{2}$, but

$$
h(f)=(\delta-f(\alpha))(f(\alpha+1)-\varepsilon+\delta)\left(f\left(\omega_{1}\right)-1+\delta\right)
$$

on \bar{U}_{α} for $\alpha \in A_{1}$. Thus $h\left(f_{\xi}\right)=0$ frequently and $h\left(f_{\xi}\right)>\delta^{3}$ frequentiy. So $h\left(f_{\xi}\right)$ does not converge.

It should be remarked that the above result shows that Corson's criterion for elements of $u X$ fails to characterize $u B$.

Even though F cannot be used to prove $i t$, the ball B of $X=J\left(\omega_{1}\right)$ is not realcompact. We can use a small multiple of F for this.
5.4 THEOREM. There is an element of $u B$ whose image in $u X$ is (.1)F.

Proof: For countable ordinal α, let $f_{\alpha}=(.1)_{\chi\left(\alpha, \omega_{1}\right]}$. I will show that $h\left(f_{\alpha}\right)$ converges for all $h \in C(B)$. This will mean that (.1)F $=1 \mathrm{im}_{\alpha} f_{\alpha}$ is in (the image of) $u B$ but not in B, so B is not realcompact.

Let $h \in C(B)$. Suppose (for purposes of contradiction) that $h\left(f_{\alpha}\right)$ does not converge. Then (by uncountable confinality) there exist $a<b$ such that $h\left(f_{\alpha}\right)>b$ frequently and $h\left(f_{\alpha}\right)<a$ frequently. Let $A_{1}=\left\{\alpha: h\left(f_{\alpha}\right)>b\right\}$, $A_{2}=\left\{\alpha: h\left(f_{\alpha}\right)<a\right\}$. Both are uncountable. For each $\alpha \in A_{1}$, choose an open neighborhood U_{α} of f_{α} determined by finitely many functionals: these functionals involve only countably many coordinates, say
$K_{\alpha}=[0, \bar{\alpha}] U\left\{\omega_{1}\right\}$, where $\bar{\alpha}<\omega_{1}$. Thus if $f_{\mid K_{\alpha}}=\left.f_{\alpha}\right|_{K_{\alpha}}$, then $h(f)>b$.

Similarly, for $\alpha \in A_{2}$ we get $K \alpha=[0, \bar{\alpha}] \cup\left\{\omega_{1}\right\}$, where $\bar{\alpha}<\omega_{1}$, and if
$\left.{ }^{f}\right|_{K_{\alpha}}=\left.f{ }_{\alpha}\right|_{K_{\alpha}}$ then $h(f)<a$.
Now define inductively $\alpha_{1}<\alpha_{2}<\ldots$ so that $\alpha_{k+1}>\bar{\alpha}_{k}, \alpha_{k} \in A_{1}$, for odd k, $\alpha_{k} \in A_{2}$ for even k. Pick $\beta>\sup _{k} \bar{\alpha}_{k}, \beta<\omega_{1}$. Then let

$$
g_{k}=(.1) \times_{\left(\alpha_{k}, \alpha_{k}\right]}+(.1) \chi_{\left(\beta, \omega_{1}\right]}
$$

then $\left.g_{k}\right|_{K_{\alpha k}}=\left.f_{\alpha_{k}}\right|_{k_{\alpha_{k}}}$ so $h\left(g_{k}\right)>b$ for k odd, $h\left(g_{k}\right)<a$ for k even. But g_{k} converges weakly to $(.1) \times\left(B, w_{1}\right]$, and this contradicts the continuity of h.
6. The next example is $X=\ell_{\infty}$. This space is realcompact, but not measurecompact. One way to see that X is not measure-compact is based on an observation of Hagler (see [2, p. 43]) . He exhibits a function $\phi:[0,1] \rightarrow \ell_{\infty}$ which is scalarly measurable (and thus Baire measurable [4, Theorem 2.3]), but not scalarly equivalent to a Bochner measurable function, so that the image of Lebesgue measure under ϕ is not a τ-smooth measure (see [4, Section 5]).

Now Hagler's function has range in B_{X}, so in order to show that B_{X} is not measure-compact, it is enough to show that ϕ is Baire measurable into B_{X}. That is, if $h \in C\left(B_{X}\right)$, then $h \circ \phi$ is Lebesgue measurable. This can be done. But my proof is so long, and the result apparently so useless, that I will not include it here. Let me include only the following hints.

Suppose $h o \phi$ is not Lebesgue measurable. Then (restricting to a subset of positive measure) there exist $a<b$ so that on every set of positive measure, h o ϕ has values $>b$ and values $<a$. Something like the constructions in Theorems 4 and 5.4 can then be carried out (on branches of a binary tree) to find points $t_{k} \in[0,1]$ and $t^{*} \in[0,1]$ so that $y_{k}=\phi\left(t^{*}\right)+\phi\left(t_{k}\right)-\phi\left(t_{k+1}\right)$ converges weakly to $\phi\left(t^{*}\right)$, but $h\left(y_{k}\right)>b$ for odd $k, h\left(y_{k}\right)<a$ for even k. This contradicts the continuity of h.

References

1. H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math Soc. 101 (1961) 1-15.
2. J. Diestel and J.J. Uh1, Vector Measures, American Mathematical Society, 1977.
3. N. Dunford and J.T. Schwartz, Linear Operators I, Interscience Publishers, 1957.
4. G.A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26(1977) 663677.
5. G.A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28(1979) 559-579.
6. G.A. Edgar, A long James space, In: Measure Theory, Oberwolfach 1979, D. Köl zow (editor), Lecture Notes in Mathematics 794, Springer-Verlag, 1980, pp. 31-36.
7. G.A. Edgar and R.F. Wheeler, Topological properties of Banach spaces. Preprint.
8. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
9. W. Moran, Measures and mappings on topological spaces, Proc. London Math. Soc. 19(1969) 493-508.
10. R. Wheeler, The retraction property, CCC property, and Dunford-Pettis-Phillips property for Banach spaces, Measure Theory, Oberwolfach 1981, D. Kölzow (editor), Lecture Notes in Mathematics, 945, Springer-Verlag, 1982, pp. 252-262.

[^0]: *Supported in part by National Science Foundation grant MCS 8003078.

