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Abs t r ac t .  I t  is proved tha t  the un i t  ba l l  (w i th  i t s  weak topo logy )  is  not r e a l -  

compact in the Banach spaces ~ J c  0 and J (~ l )  • I t  is s t a ted ,  but not proved,  

t ha t  the un i t  ba l l  is not measure-compact in the Banach space ~,  . 

1. Let X be a Banach space. Topological properties of the weak topology 

~(X , X*) have been of interest recently ( for example [ 4 ] [ 9 ] ) .  The unit ball B X = 

{x ~ X : I l x l l  < i }  in the re lat ive weak topology can also be considered. Since 

(B X , weak) is a c losed subset of  (X , weak),  we see tha t  i f  (X , weak) is  r e a l -  

compact (measure-compact) ,  so is (B X , weak) . The quest ion I w i l l  be concerned 

w i th  in t h i s  paper is whether the converse is t r u e .  

I do not have an answer to  the quest ion in genera l .  In t h i s  paper,  some con- 

c r e t e  Banach spaces X are considered tha t  are known not to be realcompact (or  

measure-compact) ,  and i t  is proved tha t  B X is a lso not realcompact (or  measure- 

compact) .  In some cases t h i s  is more d i f f i c u l t  f o r  B X than fo r  X . Reasons fo r  

the  ex t ra  d i f f i c u l t y  are hard to  pin down. Corson's c r i t e r i o n  f o r  realcompactness 

in  X [ i ,  p. I 0 ]  is fa l se  when app l ied  to  B X (see Theorem 5.3,  be low) .  The ~- 

a lgebra  of  Bai re  sets fo r  X is generated by X* [4 ,  Theorem 2.3 ]  but t h i s  is not 

n e c e s s a r i l y  t r ue  fo r  B X (see Sect ion 3) .  

Topo log ica l  words and phrases w i l l  always r e f e r  to the weak topo logy  

unless the c o n t r a r y  is s p e c i f i e d .  I f  T is a t o p o l o g i c a l  space, we w r i t e  

the  set of  a l l  con t inuous ,  r e a l - v a l u e d  func t ions  on T . 

General background on realcompactness can be found in [ 8 ] ;  on measure-compact- 

ness can be found in [9] .  

o(x  , x* )  

C(T) for 

2. In this preliminary section, we w i l l  recast some topological conditions in 

terms of nets. Doubtless this could be avoided in the sequel, but I find i t  help- 

f u l .  
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2.1 Def in i t ion .  A o-directed set is a directed set such that every countable 

subset has an upper bound. A o-net is a net whose domain is a o-directed set. 

The proofs of the fol lowing observations are omitted. 

A topological  space T is Lindelof i f  and only i f  every o-net in T has a 

c luster  point .  

A o-net that converges in ~ is eventual ly  constant. A o-net in ~ that does 

not converge has at least two f i n i t e  c luster  points. 

I f  a o-net is in a countable union ~ A n , then i t  is f requent ly in A n 

( for  some n) . n=1 

Let I be a set whose cardinal is not 2-valued measurable [ that  is ,  the dis- 

crete space I is realcompact]. I f  (x~) is a o-net in a union LJ i ~ IAi  that  is 

not eventual ly  in any A i , then there ex is t  d i s j o i n t  11 , 12 ~ I such that (x~) 

is f requent ly in each of the sets UiE I iAi  , LJiEI2 Ai • 

Let T be a topological  space. Then T is realcompact i f  and only i f  each 

o-net (x~) such that h(x~) converges for a l l  continuous h : T + • is converg- 

ent. (In general, the l im i ts  of such nets are the points of the Hewitt real com- 

pac t i f i ca t i on  uX .) 

3. I include here an example where Baire (B X , weak) ¢ Baire (X , weak) n B X. 

Some of the la te r  examples have the same property, but the ve r i f i ca t i on  is simpler 

in th is case. 

Let X = ~ l ( r )  , where card r > 2 0 Define 

3 
G = { f  : l l f J J - - <  I , f ( j )  > 7  f o r  some y E r }  . 

Then ( I)  G is a cozero set in B x ; and (2) there is no Baire set 

D n B X = G . 

To see that (I)  is t rue,  consider the funct ion. 

3 
f~+ -~v max f (y )  

y~r 

on (B X , weak) . I t  is continuous since the closure of any set Ay 

is d i s j o i n t  from the closure of the union of a l l  the rest. 

D in X with 

3 
= {f : f(~) >S} 
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For (2), suppose D is a Baire set in (X , weak) with D h B x : G . Then [4, 

Theorem 2.3] D is determined by countably many l inear functionals {gl  , g2 . . . .  } ~ 

~I(F)* Let ey be the canonical unit vectors in ~l(C) . Since card F > 2 ~0 , 

! 
there is an uncountable F 0 ~ F with gi(ey) = gi(ey ) for a l l  x , y' E F 0 and 

1 y, 
a l l  i = 1 , 2 . . . . .  Now e~ E G ~ D , so ~ (ey + ey,) E D when Y , E FO , 

but not in G . So D ~ B x ~ G . 

4. The next example is the space X = ~./c 0 , which Corson showed is not real- 

compact [1, p. 12]. The proof that B x is not realcompact is simi lar to Corson's 

proof, but greater care must be taken, since Corson's c r i te r ion  for reaIcompactness 

of X may fa i l  for B x . 

We consider ~,/c 0 = C ( B I ~  ) . For countable ordinals ~ , there exist  clopen 

sets T~ in B ~  such that i f  ~ < B then T ~  TB [1, p. 13]. Let 

= E C ( ~ \ ~  ) = X , and F = X O T ~  X** . Corson showed F ~ X but  x~ ÷ F X~ XT~ 
in  uX . In f a c t ,  I I x a l l  = I , I I F I I  = I , so I must show t h a t  h (xe )  converges 

f o r  any h £ C(Bx) Suppose no t .  Then t h e r e  e x i s t  a < b such t h a t  h (x~)  > b 

f r e q u e n t l y  and h (xa )  < a f r e q u e n t l y .  

Note t h a t  i f  H ~ B ~ \ ~  i s  the suppor t  o f  a measure,  then (by coun tab le  ad- 

d i t i v i t y )  there exists B < ~I such that H ~ (UaT~) = H ~ T~ . So for each 

such that h(x~) > b [ respect ively,  h(xa) < a] , choose a basic neighborhood of x a 

so that h(x) > b [ respect ively,  h(x) < a] on i t .  By considering f i n i t e l y  many 

supports of measures, i t  follows that there exists m < ml so that i f  xIT ~ : x~ T~ 

then h(x) > b [resp.,  h(x) < a] . So, we can choose ordinals al < a2 < -- .  such 

that h(xak ) > b for k odd, h(x~k ) < a for k even, ak+1 > ak • mk+1 > ~k • 

= I T ~  k = , SO Choose B > suPk :k  • Let Yk x~ k - Xek+ I + xB • Then Yk XakIT~ k 

h(Yk)  does not  converge .  But I I Y k l l  = I so Yk E B x and Yk ÷ xB ( p o i n t w i s e  on 

B ~ \ ~  and hence weak ly  in  C(~ I~ !~ )  by the dominated convergence t heo rem) .  So h 

i s  not con t i nuous  on C(Bx) . 

5. The next example is the long James space X = J(ml) • Notation wi l l  be 

the same as in [6] ,  which I assume is fami l iar  to the reader. Write B = B x . 

5.1 THEOREM. I f  ~ is a discrete family of nonempty open sets in 3B , then 
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{U E ~ :  U ~ B ~ @} is  coun tab le .  

P roo f .  Begin w i th  the f o l l o w i n g  o b s e r v a t i o n :  i f  a < ml , and ~ is  an un- 

coun tab le  f a m i l y  of nonempty open sets in B , then (s ince J(~)  is  separab le )  

t h e r e  e x i s t s  f ~ B such t ha t  

{U E ~ : t he re  e x i s t s  g ~ U , g [O ,a ]U{ml }  = fI[o,~]U{~l}} 

i s  uncoun tab le .  

Suppose ~ 0  = {U ~ ~ : U ~ B ~ ¢} is  uncoun tab le .  Let mO = I . Then there  

e x i s t s  f l  E B such t ha t  

I : {U ~ ~0 : t he re  e x i s t s  g ~ U , g l [ o , ~ O ] U { ~ l }  = fiI[O,~o]u{~l}} 
i s  uncoun tab le .  Choose U I E ~ I  • Then choose ~I so t h a t :  a I > s 0 , f l  i s  con- 

s tan t  on [ ~ I  , ml ] • and i f  f = f l  on [0 , ~ I ]  then f E U I . Cont inue recurs -  

i v e l y .  I f  ~k • fk • ~k  , Uk have been chosen, t he re  e x i s t s  f k + l  ~ B such t ha t  

fk  = f k + l  on [0 , ~ k . l  ] U {~ i  } and 

~k+1 = {UE ~ k  : t he re  e x i s t s  g ( U , g [O,ak ]U{ml  } = f k+11 [O,~k ]U{~1} }  

is  coun tab le .  Choose Uk+ 1E ~ k + l  d i f f e r e n t  from U 1 . . . . .  U k . Then choose 

ak+ I so t h a t :  mk+l > mk , f k+ l  is  cons tant  on [mk+l , ~I  ] , i f  f = fk+1 on 

[0  , ~k+l ] , then f ~ Uk+ I . This completes the r e c u r s i v e  c o n s t r u c t i o n .  

Now l e t  B = sup mk • Def ine g : [0 , ~1] + ~ by g(~)  = l i m k f k ( a  ) . So in 

f a c t ,  g(a)  = f k ( a )  i f  ~ ~k-1 , and g(~)  = f l ( ~ Z )  f o r  ~ ~ B • Now IIgll 

sup I I f k l l  ~ i , so l ima< B g(a)  e x i s t s ,  p o s s i b l y  not equal to  g(B) . Let 

g l ( a )  = g(m) f o r  m ~ B , g l (B )  = limm< B g(~)  . Then g l  ~ B . Note t ha t  g l  : fk 

on [0  , mk- l ]  , g l ( m l )  = fk (~1)  • 

Now cons ide r  hk = g l  + fk - f k + l  • Then h k E 3B . Also g l  = f k + l  on 

[0  , ~k] , so hk = fk on [0 , mk] • Thus h k ~ U k . A l so ,  l imkhk(m ) = g l (m)  

f o r  a l l  m . This shows t ha t  every  neighborhood i f  g l  in 3B meets i n f i n i t e l y  

many Uk's , so ~ i s  not d i s c r e t e  on 3B . [ ]  
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5 .2  C o r o l l a r y .  There is  an uncoun tab le  d i s c r e t e  f a m i l y  o f  open se ts  in  B . 

T h e r e f o r e ,  t h e r e  i s  no (weak ly )  c o n t i n u o u s  r e t r a c t i o n  o f  3B on to  B , and in  

p a r t i c u l a r ,  t h e r e  i s  no r e t r a c t i o n  o f  X on to  B . 

Proof. I f  0 < m < ~1 • let  

1 9 
Vm : { f  ~ B : f(~) < To ' f(m + 1) > To } " 

Then ~ = {Vm : 0 < ~ < ml} is an uncountable discrete family of open sets in B . 

The problem of finding retractions onto the unit ball has been studied by 

Wheeler [10]. 

I f  X = J(~l) is the long James space, i t  is proved in [6] that X is not 

realcompact. This is done as follows. Ident i fy ing X** with J(~l) , we may de- 

f ine F E X** by : 

( I )  F(~) = 0 f o r  ~ < ~1 , F(ml)  : i . 

I t  is easi ly seen from Corson's c r i te r ion  that F E uX , but F is not continuous 

at o I , so F ~ X . Thus X is not realcompact. Note that I IFI l  = 1 , so 

F ~ B But F cannot be used to show that B is not realcompact, as the 

following result shows. The wording is somewhat awkward because i t  is not clear 

that uB can be ident i f ied with a subset of X** ; cer ta in ly  the inclusion B~ X 

extends to a canonical map uB~ uX ~ X** 

5.3  THEOREM. Let  X = J ( ~ l )  - There i s  no e lement  o f  uB whose image in  uX 

i s  F d e f i n e d  in  ( I ) .  

Proof. Let (f~) be a o-net in B , suppose f~(~) ÷ 0 for ~ < ml and 

f{(ml) ÷ 1 . I wi l l  show that there is h ~ C(B) such that h(f~) does not con- 

verge. This suffices to prove the resul t ,  as noted in Section 2. 

By taking a cofinal subset of the directed set, we may assume f~(ml) = 1 for 

a l l  ~ . Also, f~(O) = 0 for al l  ~ and IIf~II ~ i , so 0 ~ f~(~) ~ 1 for 
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a l l  ~ and a l l  ~ E [ O  , ml] • Let 

Pe,E = { f  E B : f = 0 on [0  , ~] , f ( ~  + I )  > ~} . 

Then 

f~ ~ U U Pa , I / n  
n=l  a<m I 

f o r  a l l  ~ , so (again  t ak i ng  a c o f i n a l  subset )  we may assume 

f~ E U Pe,E 

m<ml 

f o r  some f i x e d  E > 0 . That i s ,  f o r  every  ~ the re  e x i s t s  m~ < ~I  , such t ha t  

f~  = 0 on [0 , m~] and f (a~ + I )  > e . Given t h i s  e , choose 6 > 0 so small 

t h a t  36 < ~ and (e - 26) 2 + ( i  - 26) 2 > I . 

For each m < ml , de f i ne  

U S = { f  ~ B : f(m) < 6 , f ( =  + I)  > ~ - 6 , f (m l )  > i - 6} , 

-U~ = { f  ~ B : f ( a )  < 6 , f ( a  + i )  > E - 6 , f ( ~ l )  _> i - ~}  , 

so tha t  f~ ~ Ua~ . The sets U s are cozero sets in B . I c la im t ha t  the ~ 

are d i s j o i n t ,  s ince 6 is  so sma l l :  indeed,  suppose f ~ ~ are 8 ~ a + 2 . Then 

I I  f l I 2  L I f (B )  - f ( ~  + I ) I  2 + I f ( ~ l )  - f ( 6 )12  • so t ha t  i f  f ( 8 )  ~ 6 , then l l f l l  2 

(~  - 2a) 2 + ( I  - 2a) 2 > I . Thus f (~ )  > 6 , so f ~ ~8 " A lso ,  f ~ U a + l  s ince 

3a< e . 

Next ,  I c la im t ha t  any s u b c o l l e c t i o n  {~a}~ A o f  the "Ua has c losed un ion.  

Let g be in the c losu re  of  U~E A-Ua . Let sO < ~I be such t ha t  g is  cons tant  

on [~0 • ~'I ] • Then g is  not c lose  to  any member of U~>~O,aE A'U~ , so g is  in 

the  c losu re  of U~<~o,o~AU- ~ . Let B 0 be the sma l l es t  o r d i n a l  such tha t  g is  in 
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the c losu re  of  U~<Bo,sE A . I f  B 0 is  a successor o r d i n a l ,  then g (  UBO . I f  

BO is  a l i m i t  o r d i n a l ,  and g ~ UBO , then c o n t i n u i t y  of  g y i e | d s  B I < B 0 such 

t h a t  Ig(m) - g(m + 1) I < ~/2 f o r  BI ~ s < B . Then g i s  not c lose  to  any member 

o f  UBI~m<B,~A~m , so g is  in the c losu re  o f  Um~BI,m~A~ m , a c o n t r a d i c t i o n .  

F i n a l l y ,  note t h a t  ( f~ )  is  a ~-net  in the d i s j o i n t  union Ua<ml Um and ~ i  i s  

not a 2 -va lued measurable c a r d i n a l ,  so the re  e x i s t  d i s j o i n t  A I , A 2 ~ [0  , ml) such 

t h a t  f~ ~ UmEAI U s f r e q u e n t l y  and f~ # Um~A2 Um f r e q u e n t l y .  By the c losedness o f  

the  unions above, there  is  a cont inuous f unc t i on  h # C(B) such t ha t  h = 0 on ~s 

f o r  m E A 2 , but 

h(f)  = (6 - f ( s ) ) ( f ( ~  + i) - e + ~)( f (ml)  - I + ~) 

~s for  s E A 1 . Thus h(f~) = 0 f requent ly  and h(f~) > 6 3 f requent ly .  So on 

h(f~) does not converge. [] 

I t  should be remarked that the above resul t  shows that Corson's c r i t e r i on  for 

elements of uX f a i l s  to character ize uB . 

Even though F cannot be used to prove i t ,  the ball  B of X = J(~1) is not 

realcompact. We can use a small mul t ip le  of F for th i s .  

5.4 THEOREM. There is an element of uB whose image in uX is ( . I )F  . 

Proof: For countable ordinal s , le t  fs  = (.1)X(s,w1 ] • I w i l l  show that 

h(fm) converges for a l l  h E C(B) . This w i l l  mean that (.1)F = l imsf  m is in (the 

image of) uB but not in B , so B is not realcompact. 

Let h EC(B) . Suppose ( for  purposes of cont rad ic t ion)  that h(fm) does not 

converge. Then (by uncountable con f i na l i t y )  there ex is t  a < b such that h(fa) > b 

f requent ly  and h(fm) < a f requent ly .  Let A I = {a : h(f  ) > b} , 

A 2 = {s : h(fe) < a} . Both are uncountable. For each m ~ A 1 , choose an open 

neighborhood Um of fa determined by f i n i t e l y  many funct ionals:  these funct ion- 

als involve only countably many coordinates, say 

: I : I , then h(f )  > b . 
' f s  I Ks Km [0 ~ ]  U {ml} , where a < ml • Thus i f  f Ks 



S i m i l a r l y ,  f o r  s E A 2 we get 

f Ks = f s  Ks then h ( f )  < a . 

Now de f i ne  i n d u c t i v e l y  

~k ~ A2 f o r  even k . Pick 
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Ks = [0 , ~ U {~1} , where ~ < ~1 , and i f  

Sl < m2 < " ' "  so t ha t  Sk+1 > mk , Sk E A 1 , fo r  odd k , 

B > sup k s k , B < ml • Then l e t  

gk = ( '1 )X(mk,mk]  + ( ' I ) × ( B , ~ I ]  

then gk Ks k = f s  k Ks k so h(gk)  > b f o r  k odd , h(gk) < a f o r  k even . But 

gk converges weak]y to  ( . I ) x I B , m l ]  , and t h i s  c o n t r a d i c t s  the c o n t i n u i t y  o f  h . [ ]  

6. The next  example is  X = ~® . This space is  rea lcompact ,  but not measure- 

compact. One way to  see t ha t  X is  not measure-compact is  based on an o b s e r v a t i o n  

o f  Hagler  (see [2 ,  p. 43])  . He e x h i b i t s  a f u n c t i o n  @ : [0  , I ]  ÷ ~ which is  

s c a l a r l y  measurable (and thus Ba i re  measurable [ 4 ,  Theorem 2 . 3 ] ) ,  but not s c a l a r l y  

e q u i v a l e n t  to  a Bochner measurable f u n c t i o n ,  so t h a t  the image of  Lebesgue measure 

under @ is  not a ~-smooth measure (see [4 ,  Sect ion  5 ] ) .  

Now H a g l e r ' s  f u n c t i o n  has range in B X , so in o rder  to  show tha t  B x is  not 

measure-compact ,  i t  is  enough to  show t h a t  @ is Ba i re  measurable i n t o  B X . That 

i s ,  i f  h E C(Bx) , then h o @ is  Lebesgue measurable .  This can be done. But my 

p r o o f  is  so l ong ,  and the r e s u l t  a p p a r e n t l y  so use less ,  t ha t  I w i l l  not i nc lude  i t  

he re .  Let me i nc lude  on ly  the f o l l o w i n g  h i n t s .  

Suppose h o @ is  not Lebesgue measurable .  Then ( r e s t r i c t i n g  to  a subset of  

p o s i t i v e  measure) the re  e x i s t  a < b so t ha t  on every  set of  p o s i t i v e  measure, h o @ 

has va lues > b and values < a . Something l i k e  the c o n s t r u c t i o n s  in Theorems 4 

and 5.4 can then be c a r r i e d  out  (on branches of  a b i n a r y  t r e e )  to  f i n d  po in t s  

t k ~ [0 , I ]  and t *  E [0 , 1] 

weak ly  to  @(t*) , but  h( Yk) 

c o n t r a d i c t s  the c o n t i n u i t y  of  
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