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Abstract. It is proved that the unit ball (with its weak topology) is not real-
compact in the Banach spaces g./cy and J(wj) . It is stated, but not proved,

that the unit ball is not measure-compact in the Banach space g, .

1. Let X be a Banach space. Topological properties of the weak topology
a(X , X*) have been of interest recently (for example [4][9]). The unit ball By =
{x € X : ]|x|| <1} in the relative weak topology can also be considered. Since
(By , weak) is a closed subset of (X , weak), we see that if (X , weak) is real-
compact (measure~compact), so is (By , weak) . The question I will be concerned
with in this paper is whether the converse is true.

1 do not have an answer to the question in general. In this paper, some con-
crete Banach spaces X are considered that are known not to be realcompact (or
measure-compact), and it is proved that By is also not realcompact (or measure-
compact). In some cases this is more difficult for By than for X . Reasons for
the extra difficulty are hard to pin down. Corson's criterion for realcompactness
in X [1, p. 10} is false when applied to By (see Theorem 5.3, below). The o-
algebra of Baire sets for X is generated by x* [4, Theorem 2.3] but this is not
necessarily true for By (see Section 3).

Topological words and phrases will always refer to the weak topology o{X , X*)
unless the contrary is specified. If T 1is a topological space, we write C(T) for
the set of all continuous, real-valued functions on T .

General background on realcompactness can be found in [8]; on measure-compact-

ness can be found in [9].

2. In this preliminary section, we will recast some topological conditions in
terms of nets. Doubtless this could be avoided in the sequel, but I find it help-

ful.

*Supported in part by National Science Foundation grant MCS 8003078.
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2.1 Definition. A og-directed set is a directed set such that every countable

subset has an upper bound. A g-net is a net whose domain is a o-directed set.

The proofs of the following observations are omitted.

A topological space T 1is Lindelof if and only if every g-net in T has a
cluster point,

A o-net that converges in R s eventually constant. A g-net in R that does
not converge has at least two finite cluster points.

If a o-net is in a countable union lj A, » then it is frequént]y in A,
(for some n) . n=1

Let I be a set whose cardinal is not 2-valued measurable [that is, the dis-
crete space 1 is realcompact]. If (x;) {is a c-net in a union Ui €{A; that is
not eventually in any A; , then there exist disjoint I; , I &1 such that (xg)
is frequently in each of the sets ;¢ IlAi P LJiGIg A; .

Let T be a topological space. Then T 1is realcompact if and only if each
g-net (xg) such that h(xs) converges for all continuous h : T+ R is converg-
ent. (In general, the limits of such nets are the points of the Hewitt real com-

pactification uX .)
3. I include here an example where Baire (By , weak) # Baire (X , weak) n By.
Some of the later examples have the same property, but the verification is simpler
in this case.
R
Let X = g3(r) , where card T > 2 0, Define

6= {f: ||fl] <1, f(§) > for some y € T} .

&lw

Then (1) G is a cozero set in By ; and (2) there is no Baire set D in X with
DnBX=G.
To see that (1) is true, consider the function.

£ '2'\1 max f{vy)

X
Yer

on (Bx , weak) . It is continuous since the closure of any set AY = {f: f(y) >=}

is disjoint from the closure of the union of all the rest.
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For (2), suppose D is a Baire set in (X , weak) with D N By = G . Then {4,

Theorem 2.3] D s determined by countably many linear functionals {g] 5 92 s«s.} <

R
zl(r)* . Let e, be the canonical unit vectors in g2y(r) . Since card T > 2 0

Y

there is an uncountable rp €T with gi(eY) = gi(eY') for a1l y , y' € 1y and
. 1

all i=1,2,.... Now e, €G<=D, so E(eY+eY')ED when v , ' €Tg

but not in G . So DNBy=+*G.

4. The next example is the space X = g,/cg , which Corson showed is not real-
compact [1, p. 12]. The proof that By is not realcompact is similar to Corson's
proof, but greater care must be taken, since Corson's criterion for realcompactness
of X may fail for By .

We consider 32,/cqg = C(BINN ) . For countable ordinals « , there exist clopen
sets T, in BININ such that if o < g8 then Ty § TB [1, p. 13]. Let
Xq = X € C{e\w } =X, and F = xurae X** . Corson showed F & X but x, + F
in uX . In fact, ||xgl]l =1, ||F]{ =1, so I must show that h(x,) converges
for any h € C(By) . Suppose not. Then there exist a < b such that h(xa) > b
frequently and h(x,) < a frequently.

Note that if H< BI\IY is the support of a measure, then (by countable ad-
ditivity) there exists g < w; such that H A (U T ) =HN Tg - So for each «
such that h(xa) > b {respectively, h(xu) < a] , choose a basic neighborhood of x,
so that h(x) > b [respectively, h{x) < a] on it. By considering finitely many
supports of measures, it follows that there exists : < wp SO that if xlTE = XGITE
then h(x) > b [resp., h(x) < al . So, we can choose ordinals aj < ap < ... Such

that h(xak) >b for k odd, hixy, )} <a for k even, apy1 > agx » age] > ok -

i
Choose B > supy ax » Let y, = Xy ~ X oy 41 + xg « Then yy T2 = x“k'r— » SO
k R
h(yx) does not converge. But |[yg|| =1 so y €By and y; » xg (pointwise on

BI\N and hence weakly in C(BIN\T¥) by the dominated convergence theorem). So h

is not continuous on C(By) .

5. The next example is the long James space X = J{wy) . Notation will be

the same as in [6], which I assume is familiar to the reader. Write B = By .

5.1 THEQOREM, If U is a discrete family of nonempty open sets in 3B , then
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{U € Y:UNB = ¢} 1is countable,

Proof. Begin with the following observation: if a < wy , and Y is an un-
countable family of nonempty open sets in B , then (since J{a) 1is separable)

there exists f € B such that

{U € Yy : there exists gelU , g [0,alUCwy} = f [o a]U{wl}}

is uncountable.
Suppose ?40 ={UE%:UNB=+ ¢} is uncountable. let ag= 1. Then there

exists fy € B such that

Uy = {UE€ Uy : there exists ey, = f
1= W% xists g I00,0010t0p} ~ T1|00,aqI0 0wy}’

is uncountable. Choose U; € Uy . Then choose a7 so that: ay > ag , f; is con-
stant on [a; , wj] , and if f =f; on [0, a;] then f €U; . Continue recurs-
ively. If o , fx , Uy » U have been chosen, there exists fp,y & B such that

fx = fxa1 on [0, o.1] U {wy} and

% = {U€ U, : the ists €Ev, = f
ka1 = L K re ex g g [0,ax JU{w)} k+1 [O,ak]U(wl}}

is countable, Choose Ug4q € Uyyy different from Uy ,..., Y . Then choose
og+1 SO that: apyq > of , fryp s constant on [opyy 5 wyl , if f = fi g on
[0, og4y] » then £ €U ,q . This completes the recursive construction.

Now let B = sup og . Define g : [0, wy] + R by gla) = Vimfi(a) . So in

fact, g(a) = fi(a) if o« < a_7, and g(a) = fy(w;) for o > B . Now Hell <
sup [[fill <1, 50 limyez g{a) exists, possibly not equal to g(8) . Let
g1{a) = g(a) for o # 8, gy(8) = limycg 9{a) . Then gy € B . Note that g7 = f}

on [0, o_1], 91(wy) = filwy) .

Now consider hy =gy + fic - fiy,y . Then h € 38 . Also g1 = fyq on
[0, ¢l ,s0 hy=Ff on [0, l. Thus h €U . Also, limghg(a) = gy(a)
for all a . This shows that every neighborhood if gy in 3B meets infinitely

many Ug's , so U 1is not discrete on 3B . U
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5.2 Corollary. There is an uncountable discrete family of open sets in B .

Therefore, there is no (weakly) continuous retraction of 3B onto B , and in

particular, there is no retraction of X onto B .

Proof. If 0 <a<w , let

1 9
= feB:f .._’f + D .
Vo = (a) < 10 (a + 1) 10 }

Then U = (V, : 0 < a< w1} s an uncountable discrete family of open sets in B .0

a
The problem of finding retractions onto the unit ball has been studied by
Wheeler [10].
If X = J(w) 1is the long James space, it is proved in [6] that X 1is not
realcompact. This is done as follows. Identifying X% with 3(m1) , we may de-

fine F € X** by
(1) Fla) =0 for a < w] » F(wl) =1.

It is easily seen from Corson's criterion that F € uvX , but F s not continuous
at w; ,» S0 F &X . Thus X is not realcompact. Note that [[F[[ =1, so

F € BX‘* . But F cannot be used to show that B is not realcompact, as the
following result shows. The wording is somewhat awkward because it is not clear
that B can be identified with a subset of X** ; certainly the inclusion B— X

extends to a canonical map uB -+ uwX & .

5.3 THEOREM. Llet X = J{wj) . There is no element of uB whose image in X
is F defined in (1).

Proof. Let (fg) be a g-net in B , suppose fg(a) » 0 for a < w; and
fg(wl) +»1 . I will show that there is h € C(B) such that h(fg) does not con-
verge. This suffices to prove the result, as noted in Section 2.

By taking a cofinal subset of the directed set, we may assume fE(wl) =1 for

all ¢ . Also, fE(O) =0 for all & and 'le|| <1l,s0 0 f_fg(a) <1 for
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all ¢ and all o« €[00, w1] . Let

Pa,e = {fe€B:f=0 on [0,a], flat+1)>e}.
Then

fg e U u Pa,l/n
n=1 a<wy

for all £ , so (again taking a cofinal subset) we may assume

fg € y P

asw]

[+ Y

for some fixed e > 0 . That is, for every £ there exists op < W] such that
feg =0 on fo, aE] and f(aE + 1) > e . Given this ¢ , choose & > 0 so small
that 36 < e and (e - 28)2 + (1 - 26)2 > 1 .

For each a < w] , define

Uy = {f€B: fla) <6, flat+l) >e -8, fluyg) > 1 -8},

|
"

{f€B: fla) <6, flatl)>e-58, flug) >1-8},

so that f, € Umg . The sets U, are cozero sets in B . I claim that the U;
are disjoint, since § is so small: indeed, suppose f € U, are g >a+ 2. Then
FIFII2 > 1f(8) - fla+ 1|2 + [flug) - f(8)]2 , so that if f(g) <& , then ||f||2_>_
(e-28)2+ (1-28)2>1. Thus f(g) >6, 50 f&Ug. Also, F&Uyy since

3§ < g .

Next, I claim that any subcollection {U;}a p of the ﬂ; has closed union,
Let g be in the closure of U,ep Uﬁ . let ap < wy be such that g is constant

on [ag » wl] . Then g 1is not close to any member of Ua>a0’aEA ﬁ; , SO0 g 1is in

the closure of Uagao’ueA Uy - Let By be the smallest ordinal such that g is in
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. If By 1is a successor ordinal, then g€ Uéo . If

the closure °f-DGSBO’“EA U;

gg is a limit ordinal, and g ¢ Uéo , then continuity of g yields 871 < 8g such
that {gla) - g{a + 1)] < §/2 for By <a< g . Then g 1is not close to any member
of L%15u<8,a€A-Ua » S0 g s in the closure of Uycq. qeh U, , a contradiction.

Finally, note that (fE) is a o-net in the disjoint union U U, and Ry s

u<m1 o
not a 2-valued measurable cardinal, so there exist disjoint Ay , A = [0, wy) such

that fE € UaGAl U, frequently and fg € UaGA2 U, frequently. By the closedness of

[+

the unions above, there is a continuous function h € C(B) such that h =0 on U,

for o € Ap , but

h(f) = (§ - fla)){fla+ 1) -+ §)(flwg) -1 +38)

on .Gu for o€ Ay . Thus h(fE) = 0 frequently and h(fg) > 83 frequently. So

h(fE) does not converge. O
It should be remarked that the above result shows that Corson's criterion for
elements of uX fails to characterize uB .
Even though F cannot be used to prove it, the ball B of X = J(wy) fis not

realcompact. We can use a small multiple of F for this.
5.4 THEOREM. There is an element of uB whose image in vX dis (.1)F .

Proof. For countable ordinal o , let fa = ('1)X(u,w1] . 1 will show that
h(f,) converges for all h € C{B) . This will mean that (.1)F = lim f, is in (the
image of) uB but not in B, so B 1is not realcompact.

Let h €C(B) . Suppose (for purposes of contradiction) that h{f,) does not
converge. Then (by uncountable confinality) there exist a < b such that h{(f ) > b
frequently and h(f,) < a frequently. Let Ay = {a : h(f ) > b} ,

Ap = {a: h(fa) < a} . Both are uncountable. For each a € Ay , choose an open
neighborhood U, of f, determined by finitely many functionals: these function-
als involve only countably many coordinates, say

, then h(f) >b .

Ke= 00, al U {w} , where a < w; . Thus if fl = f
[+

o el
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Similarly, for « € Ay we get Ka = [0, o] U {w;} , where & < wp , and if

f =f then h(f) <a .
'Kq a'Ka —_
Now define inductively o < ap < ... SO that op4) > ag » ax € Ap , for odd k ,

ay €Ap for even k . Pick B > supy ;k » B <wy . Then let

9 = ('l)x(“k’“k] + (-I)X(B,wl] .

then gk'Kak = fﬁk Kak so h(g) >b for k odd , h(gy) <a for k even . But

gy converges weakly to ('1)X(8,m1] , and this contradicts the continuity of h . U

6. The next example is X = g, . This space is realcompact, but not measure-
compact. One way to see that X is not measure-compact is based on an observation
of Hagler {see [2, p. 43]) . He exhibits a function ¢ : [0 , 1] » 2, which is
scalarly measurable (and thus Baire measurable [4, Theorem 2.3]), but not scalarly
equivalent to a Bochner measurable function, so that the image of Lebesgue measure
under ¢ 1is not a t-smooth measure (see [4, Section 5]).

Now Hagler's function has range in By , so in order to show that By is not
measure-compact, it is enough to show that ¢ is Baire measurable into By . That
is, if h € C(By) , then h o ¢ is Lebesgue measurable. This can be done. But my
proof is so long, and the result apparently so useless, that I will not include it
here. Let me include only the following hints.

Suppose h o ¢ 1is not Lebesque measurable, Then (restricting to a subset of
positive measure) there exist a < b so that on every set of positive measure, h o ¢
has values > b and values < a . Something 1ike the constructions in Theorems 4
and 5.4 can then be carried out {on branches of a binary tree) to find points
ty € [0, 1] and t* € [0, 1] so that Yk = o{t™) + d{tg) - ¢(tgsq) converges
weakly to  ¢(t¥) , but h( yk) >b for odd k , h{ yi) <a for even k . This

contradicts the continuity of h .
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